
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 326 (2009) 205–212
0022-46

doi:10.1

� Tel.

E-m
journal homepage: www.elsevier.com/locate/jsvi
Identification of multiple cracks in a beam using
vibration amplitudes
Jinhee Lee �

Department of Mechanical and Design Engineering, Hongik University, Chochiwon, Yeonki-gun, Choongnam 339-701, Republic of Korea
a r t i c l e i n f o

Article history:

Received 28 November 2008

Received in revised form

28 February 2009

Accepted 30 April 2009

Handling Editor: L.G. Tham
Available online 2 June 2009
0X/$ - see front matter & 2009 Elsevier Ltd.

016/j.jsv.2009.04.042

: +8210 7321 2589; fax: +82 41862 2664.

ail address: jinhlee@hongik.ac.kr
a b s t r a c t

A simple method to identify multiple cracks in a beam using the vibration amplitudes is

presented. The cracks are modeled as massless rotational springs and the forward

problem is solved using the finite element method. The inverse problem is solved

iteratively for the crack locations and sizes using the Newton–Raphson method and the

singular value decomposition method. A two-dimensional finite element model is built

to simulate the experimental results and to provide vibration amplitude measurements.

The difficulty of identifying multiple cracks without a priori knowledge of the number of

cracks is overcome by comparing the residual sum of squares of each solution with

assumed number of cracks. The crack locations are estimated accurately and the

accuracy of the crack size estimations are to be enhanced greatly by an improved

torsional stiffness model.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Due to its practical importance, the crack identification problem in structures has been extensively investigated and
many methods were proposed. Despite of extensive research on the crack identification based on the changes of natural
frequencies [1–14], little work has been done using the changes of vibration amplitudes.

The frequency contour plot method [1–7] had been one of the most favored tools to identify a single crack using the
lowest three natural frequencies, which was further developed to deal with multiple cracks [8]. Liang et al. [1] proposed the
frequency contour method in which the crack was modeled as a massless rotational spring. The solution of a characteristic
equation for a given natural frequency and a crack location gave the local stiffness. Because only one value of stiffness was
permissible at a given crack location, the intersections of the various values of stiffness at various natural frequencies along
the axial direction provided the location of the crack. The scheme was applied to the crack detection in stepped beams [2]
and truncated wedged beams [3,4]. Nandwana and Maiti [5] modeled the vibration of a beam in the presence of an inclined
edge or internal normal crack to detect the location of the crack. Lele and Maiti [6] extended the frequency contour plot
method to the crack identification in beams based on the Timoshenko beam theory. Nikolakopoulos et al. [7] identified the
crack location and the crack depth of frame structures by determining the superposed contour intersections. Hu and Liang
[8] proposed two damage modeling techniques, one involving the use of massless spring to represent the discrete cracks
and the other one employing the continuum concept. The continuum model was used first to identify the discretizing
element of a structure that contained cracks, and then the spring damage model was used to quantify the location and size
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of the crack in each damaged element. Patil and Maiti [9] adopted the approach of Hu and Liang [8] and applied the transfer
matrix method to the identification of multiple cracks.

Narkis [10] calculated the natural frequencies of a cracked simply supported beam by an approximate analytical
solution and proposed that the only information required for the crack identification was the variation of the first two
natural frequencies due to the crack. Morassi [11] derived an explicit expression of the frequency sensitivity to the crack if
the crack was very small, and proposed that the measurement of the frequency of cracked beam under simply supported
boundary conditions determined uniquely the stiffness of the rotational spring and the position. Dado [12] proposed a two-
table method for the detection of the crack. The first table was entered with the two natural frequencies to obtain the crack
location and the second table was entered with the first natural frequency and the crack location to obtain the crack depth.
Shifrin and Ruotolo [13] proposed that kþ 2 equations were sufficient to form the system determinant for a beam with k

cracks. Lee [14] applied the Newton–Raphson method to identify k cracks in a beam where 2k natural frequencies of the
cracked beam were required. The elements of the Jacobian matrix were the sensitivities of the natural frequencies with
respect to the crack parameters.

Owolabi et al. [15] used the changes in natural frequencies and frequency response function amplitudes as a function of
crack depths and locations in the crack detection. They noticed that the mode shape underwent a noticeable change close
to the crack location area as the crack grew, and estimated the crack depth and location based on the observed changes in
the natural frequencies and mode shapes. Rizos et al. [16] estimated the crack size and location from the measured
amplitudes of the structure vibrating at one of its natural modes and the analytical solution of the dynamic response.
Dilena and Morassi [17] proposed a method to detect a single crack when damage-induced shifts in the nodes of the mode
shapes of a beam were known.

The objective of the present study is to present a simple method of identifying multiple cracks in a beam using the
changes of the forced vibration amplitudes. The Newton–Raphson method and the singular value decomposition method
are used for the estimation of crack parameters.
2. Forward problem

The geometry of a beam with multiple cracks is given in Fig. 1. The cracks are represented by massless rotational springs.
Parameters ai ¼ ai=h and bi ¼ si=L ði ¼ 1;2; . . .Þ denote the normalized crack size and the normalized crack location. h and L

are the thickness and the length of the beam. The finite element equation of a beam element of length DL based on the
Euler–Bernoulli theory is given as

½M�ef €Wge þ ½K�efWge ¼ fFge (1)

where matrices ½M�e and ½K�e are the element mass and stiffness matrices defined as

½M�e ¼
rADL

420

156 22DL 54 �13DL

4ðDLÞ2 13DL �3ðDLÞ2

156 �22DL

SYM 4ðDLÞ2

2
66664

3
77775 (2)

and

½K�e ¼
EI

ðDLÞ3

12 6DL �12 6DL

4ðDLÞ2 �6DL 2ðDLÞ2

12 �6DL

SYM 4ðDLÞ2

2
66664

3
77775 (3)

fWge ¼ fwi yi wiþ1 yiþ1g
T and fFge are the element generalized displacement vector and element generalized load vector.

E, r, A and I are Young’s modulus, the density, the cross-sectional area and the second moment of area, respectively.
Fig. 1. Beam with cracks and massless rotational spring model.
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When the massless rotational spring connects node j and node j+1, the deflections of node j and node j+1 are the same,
i.e., wj ¼ wjþ1. It is also required that the rotations yj and yjþ1 are coupled through the cracked stiffness matrix

½K�c ¼
k �k
�k k

� �
(4)

k is the torsional stiffness at the open crack which was proposed by Ostachowicz and Krawkczuk [18] as

k1 ¼
bh2E

72pa2f 1ðaÞ
(5a)

f 1ðaÞ ¼ 0:6384� 1:035aþ 3:7201a2 � 5:1773a3 þ 7:553a4 � 7:332a5 þ 2:4909a6 (5b)

and it was employed in the studies of Nandwana and Maiti [2], Chaudhari and Maiti [3], and Lele and Maiti [6] and Patil and
Maiti [9]. b stands for the beam width. On the other hand, Dimarogonas [19] and Dimarogonas and Paipetis [20] proposed
k as

k2 ¼
EI

5:346hf 2ðaÞ
(6a)

f 2ðaÞ ¼ 1:8624a2 � 3:95a3 þ 16:375a4 � 37:226a5 þ 76:81a6 � 126:9a7

þ 172a8 � 143:97a9 þ 66:56a10 (6b)

which was adopted in the works of Hu and Liang [8], Dado [12], Shifrin and Ruotolo [13], Rizos et al. [16] and Ruotolo and
Surace [21].

Matrices ½M�e, ½K�e and ½K�c are assembled to form the global mass and stiffness matrices ½M� and ½K�, and the equations
of motion becomes

½M�f €Wg þ ½K�fWg ¼ fFðtÞg (7)

When the beam is exited by a sinusoidal force at frequency oi rad/s

fFðtÞg ¼ fF�g sin oit (8)

the global generalized displacement vector fWg is also in a sinusoidal motion

fWg ¼ fW�g sin oit (9)

in the absence of damping, and the equations of motion of Eq. (7) becomes

ð½K� �o2
i ½M�ÞfW

�g ¼ fF�g (10)

Let us assume one of the simplest setups of forced vibration. A shaker is installed at the free end ðx ¼ LÞ of a cantilever
beam and excites the beam at m different frequencies ðo1;o2; . . . ;omÞ and the vertical deflections are observed at n evenly
spaced locations as shown in Fig. 2. Also define wij to be the deflection at location j divided by the deflection of the free end
when the beam is excited at frequency oi rad/s. A program is written in Matlab to compute the deflection wij when the
beam is excited at frequency oi rad/s. It is worthwhile to note that the excitation frequency oi does not have to be one of
the natural frequencies of the beam.

Ruotolo and Surace [21] conducted experimental tests on cantilever beams with and without cracks and measured the
natural frequencies as listed in Table 1. The cantilevers were made of C30 steel and their dimensions were
0.02�0.02�0.8 m3. The cracked beam had double cracks and the crack parameters were a1 ¼ 0.2, a2 ¼ 0.3, b1 ¼ 0.3182
and b2 ¼ 0.6812. The cracks were obtained by wire erosion with a 0.1 mm diameter wire to produced notches 0.13 mm
wide.

In general Young’s modulus of steel is considered to range from 180 to 210 GPa. Alternatively, Young’s modulus can be
found from the measured natural frequencies of the undamaged cantilever beam and the Euler–Bernoulli beam theory
Fig. 2. Schematic diagram of deflection wij at excitation frequency oi.
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Table 1
Natural frequencies of undamaged and cracked beams.

f1 (Hz) f2 (Hz) f3 (Hz)

Experimental measurements [21] Undamaged 24.175 152.103 424.455

Cracked 24.044 149.268 409.287

Present study (E ¼ 181 GPa) 2D model (ANSYS) Cracked 24.108 149.09 408.73

k ¼ k1 Cracked 24.105 149.54 412.04

k ¼ k2 Cracked 24.145 150.12 415.02

k ¼ 0.83k1 Cracked 24.067 149.01 409.33

k ¼ 0.65k2 Cracked 24.067 149.03 409.39

C30 steel, b ¼ 0.02 m, h ¼ 0.02 m, L ¼ 0.8 m, double cracks, a1 ¼ 0.2, a2 ¼ 0.3, b1 ¼ 0.3182, and b2 ¼ 0.6812.

Fig. 3. Two-dimensional finite element model for ANSYS analysis (1135 eight-node elements, 3732 nodes, crack width of 0.13 mm, L ¼ 0.8 m, h ¼ 0.02 m,

a1 ¼ 0.2, a2 ¼ 0.3, b1 ¼ 0.3182, and b2 ¼ 0.6812).
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relationships

f 1 ¼
1:8752

2p

ffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
; f 2 ¼

4:6942

2p

ffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
; f 3 ¼

7:8552

2p

ffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
(11a,b,c)

The averaged Young’s modulus computed from the measured natural frequencies of the undamaged cantilever of Table 1
and Eqs. (11a–c) is 181 GPa, and E ¼ 181 GPa is used through out this study.

To simulate the experimental results of Ruotolo and Surace [21] a finite element analysis is carried out using the
commercial program ANSYS. A two-dimensional mesh composed of 1135 eight-node elements and 3732 nodes is built
as shown in Fig. 3, and the material properties E ¼ 181 GPa, r ¼ 7860 kg/m3 and Poisson’s ratio n ¼ 0.29 are input. The
solution from ANSYS is given in Table 1, which are in good agreement with the measured results of Ruotolo and Surace [21].
It indicates that the two-dimensional ANSYS model accurately simulates the dynamic characteristics of the experimental
results.

The torsional stiffness models of Eqs. (5) and (6) are compared in Fig. 4. It shows that the discrepancy between Eqs. (5)
and (6) in the range of (0.1oao0.5) is significant, which implies that the application of them without proper calibration
may lead to an erroneous solution.

The natural frequency o in rad/s of the Euler–Bernoulli beam with rotational spring model can be computed from the
free vibration equation

½K�fWg ¼ o2½M�fWg (12)

where matrices ½M� and ½K� are borrowed from Eq. (7). Another program is written in Matlab, and the natural frequencies of
the cantilever beam with the rotational spring model k ¼ k1 (the torsional stiffness model of Ostachowicz and Krawkczuk
[18]) and k ¼ k2 (the torsional stiffness model of Dimarogonas and Paipetis [20]) are computed, respectively, and the
results are given in Table 1. It shows that the natural frequencies of the beam with either the rotational spring model k ¼ k1

or k ¼ k2 deviate considerably from the measured data and that both the torsional stiffness models need improvements.
The proper selection of the torsional stiffness model is one of the most crucial factors in the crack detection in structures.
Investigation of the sophisticated torsional stiffness model is beyond the scope of this study, and simple scaling down of k1

and k2 is considered. After several trials it is found that the torsional stiffness model k ¼ 0.83k1 or k ¼ 0.65k2 provides
better results than k ¼ k1 or k ¼ k2 as shown in Table 1.
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Fig. 4. Comparison of the torsional stiffness models of Ostachowicz and Krawkczuk [18] and Dimarogonas and Paipetis [20] (E ¼ 181 GPa, b ¼ 0.02 m, and

h ¼ 0.02 m).

Table 2
Vibration amplitudes wij of a cantilever beam by harmonic response analysis of ANSYS and two-dimensional mesh of Fig. 3.

Excitation frequency oi (rad/s) wi1 wi2 wi3

250 (i ¼ 1) 0.1192 0.3921 0.7058

500 (i ¼ 2) 0.3786 0.9873 1.2365

1000 (i ¼ 3) �0.3753 �0.6074 �0.0472

2000 (i ¼ 4) �2.3603 �1.2285 2.4105

L ¼ 0.8 m, d ¼ 0.02 m, h ¼ 0.02 m, E ¼ 181 GPa, r ¼ 7860 kg/m3, n ¼ 0.29, double cracks, a1 ¼ 0.2, a2 ¼ 0.3, b1 ¼ 0.3182, b2 ¼ 0.6812, m ¼ 4, and n ¼ 3.
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Because the solution by ANSYS in Table 1 is proved reliable, the deflections wij’s are obtained by the harmonic response
analyses using ANSYS and the two-dimensional finite element model of Fig. 3 and the results are given in Table 2. The same
material properties are used as in the computation of the natural frequencies. The number of excitation frequencies and the
number of amplitude pickup points in the beam are m ¼ 4 and n ¼ 3. The excitation frequencies are o1 ¼ 250 rad/s,
o2 ¼ 500 rad/s, o3 ¼ 1000 rad/s and o4 ¼ 2000 rad/s.

3. Inverse problem

It is assumed that mn vibration amplitude measurements ðwo
11;w

o
12; . . . ;w

o
mnÞ are available. For the identification of

k cracks there are 2k unknown crack parameters: a1, b1, a2, b2,y,ak and bk (b1ob2o?obk). The Newton–Raphson
procedure is applied as follows:
(a)
 assume the initial values of a1;b1;a2;b2; . . . ;ak;bk;

(b)
 locate the nodes that represent the cracks according to the new crack position parameters b1;b2; . . . ;bk and generate

the finite element mesh of the beam;

(c)
 solve the forward problem for the vibration amplitudes w11;w12; . . . ;wmn with the given crack parameters
ða1;b1;a2;b2; . . . ;ak;bkÞ and excitation frequencies ðo1;o2; . . . ;omÞ, and evaluate the Jacobian matrix [J]:

½J� ¼

qw11
qa1

qw11
qb1

qw11
qa2

qw11
qb2

� � �
qw11
qak

qw11
qbk

qw12
qa1

qw12
qb1

qw12
qa2

qw12
qb2

� � �
qw12
qak

qw12
qbk

..

. ..
. ..

. ..
. ..

. ..
.

qwmn
qa1

qwmn
qb1

qwmn
qa2

qwmn
qb2

� � �
qwmn
qak

qwmn
qbk

2
666666664

3
777777775

(13)
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the residuals

<11 ¼ w11 �wo
11

<12 ¼ w12 �wo
12

..

.

<mn ¼ wmn �wo
mn

8>>>>><
>>>>>:

(14)
(d)
 solve the equation

½J�

da1

db1

da2

db2

..

.

dak

dbk

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼ �

<11

<12

..

.

<mn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(15)

fda1 db1 da2 db2 . . .dak dbkg
T,
for

(e)
 update the crack parameters

ðaiÞnew ¼ ðaiÞold þ dai; ðbiÞnew ¼ ðbiÞold þ dbi ði ¼ 1;2; . . . ; kÞ (16)
(f)
 iterate the procedures (b)–(e) until the residuals become sufficiently small.
It is important the number of equations mn exceeds the number of crack parameters 2k so that the system is sufficiently
overdetermined, and Eq. (15) is solved in a least-squares sense using the singular value decomposition method. The
elements of the Jacobian matrix are the sensitivities of the vibration amplitudes wij with respect to the crack parameters
and they are computed numerically. For example, qwij=qak is computed by

qwij

qak
¼

wijða1;b1; . . . ;ak þ d; . . . ;bnÞ �wijða1;b1; . . . ;ak; . . . ;bnÞ

d
; ðjdj51Þ (17)

The forward problem is solved mð2kþ 1Þ times per iteration to build the Jacobian matrix and the residuals. To avoid
overshoots in the early stage an underrelaxation is performed during the first several iterations

ðaiÞnew ¼ ðaiÞold þ 0:25dai; ðbiÞnew ¼ ðbiÞold þ 0:25dbi ði ¼ 1;2; . . . ; kÞ (18)

The number of cracks present in a beam is usually unknown, and the identification of multiple cracks in a beam
assuming that the number of cracks is known a priori has a serious limitation. To overcome this difficulty an additional
procedure is proposed. When the number of cracks in a beam is unknown a priori, we assume that the beam has a single
crack and solve the inverse problem to estimate the crack parameters and the square root of the residual sum of squares
ð
Pm

i¼1

Pn
j¼1<

2
ijÞ

1=2. We also assume several different numbers of cracks in the beam and solve the inverse problem to
estimate the crack parameters and the square root of the residual sum of squares for each assumed crack number. Then we
can find the most probable number of cracks by looking for the number which yields the minimum square root of the
residual sum of squares.

To demonstrate the above procedure an example is provided. Let us suppose that the cracks in a beam are to be
identified and that the number of cracks is unknown a priori. The deflections wij’s given in Table 2, which are the results of
the harmonic response analyses by ANSYS, are input as the vibration amplitude measurements. The torsional stiffness of
the rotational spring model is selected as k ¼ 0.65k2. Firstly the number of cracks in the beam is assumed to be one and the
crack parameters and the square root of the residual sum of squares are computed. The number of cracks in the beam is
assumed to be two and three, respectively, and the corresponding crack parameters and the square root of the residual sum
of squares are computed, which are listed in Table 3. It shows that ð

Pm
i¼1

Pn
j¼1<

2
ijÞ

1=2is the smallest when the assumption of
the number of cracks is made correctly, which indicates that the number of cracks in the beam is two. The estimated crack
parameters are a1 ¼ 0.2252, a2 ¼ 0.2609, b1 ¼ 0.3214 and b2 ¼ 0.6764. The estimated crack locations are considered
very accurate. Since the actual normalized crack locations are b1 ¼ 0.3182 and b2 ¼ 0.6812, the observed errors of the
normalized crack locations are within 70.0048. On the other hand, the errors of the estimated crack sizes are within
13 percent of the actual sizes. It is supposed that the accuracy of the crack size estimations can be enhanced greatly by an
improved torsional stiffness model.

Proper selection of the initial guesses of the crack parameters is important because the present method is based on the
Newton–Raphson iteration method. The ranges of the initial guesses to produce a converged solution vary from case to
case. When the number of cracks is assumed to be two in the crack identification given above, the solution does not
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Table 4

Range of the initial guess of b2 for 0.12pb1p0.47 for the convergence of the solution.

b1 b2

b1 ¼ 0.12 0.66rb2r0.85

b1 ¼ 0.2 0.56rb2r0.92

b1 ¼ 0.3 0.53rb2r0.91

b1 ¼ 0.4 0.51rb2r0.81

b1 ¼ 0.47 0.53rb2r0.74

Two cracks assumed, actual crack parameters: a1 ¼ 0.2, a2 ¼ 0.3, b1 ¼ 0.3182, and b2 ¼ 0.6812.

Table 3
Actual and detected crack parameters with the number of cracks unknown a priori.

a1 a2 a3 b1 b2 b3 ð
Pm

i¼1

Pn
j¼1<

2
ijÞ

1=2

Actual 0.2 0.3 – 0.3182 0.6812 –

Detected (one crack assumed) 0.2977 – – 0.3520 – – 0.0971

Detected (two cracks assumed) 0.2252 0.2609 – 0.3214 0.6764 – 0.0067

Detected (three cracks assumed) 0.2112 0.2729 0.0118 0.3569 0.6870 0.8429 0.2777

Actual number of cracks is 2, L ¼ 0.8 m, b ¼ 0.02 m, h ¼ 0.02 m, m ¼ 4, n ¼ 3, and k ¼ 0.65k2.

Table 5
Mean values and standard deviations of the crack parameters when the vibration amplitude measurements are exposed to the random noise which is

normally distributed with zero mean and standard deviation snoise.

snoise a1 sa1
a2 sa2 b1

sb1 b2
sb2 ð

Pm
i¼1

Pn
j¼1<

2
ij
Þ1=2

0.001 0.2253 0.0010 0.2607 0.0013 0.3212 0.0013 0.6765 0.0011 0.0069

0.002 0.2255 0.0026 0.2605 0.0026 0.3215 0.0037 0.6764 0.0028 0.0086

0.005 0.2230 0.0082 0.2603 0.0053 0.3139 0.0115 0.6810 0.0080 0.0159

0.01 0.2262 0.0121 0.2641 0.0140 0.3162 0.0193 0.6774 0.0113 0.0256

0.02 0.2362 0.0224 0.2632 0.0255 0.3225 0.0260 0.6680 0.0232 0.0495
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converge for the initial guess of b1o0.12 or b140.47. The range of initial guess of b2 for the convergence of the solution is
given in Table 4 for 0.12rb1r0.47. The convergence of the solution is not strongly affected by the variations of the initial
guesses of crack sizes, and initial values of a1 ¼ a2 ¼ 0.3 are used throughout this study.

Like all other inverse problems, the present method is influenced by input noise. To simulate the input noise, random
numbers are generated so that they are normally distributed with zero mean and standard deviation snoise. The level of
noise is controlled so that snoise becomes 0.001, 0.002, 0.005, 0.01 and 0.02, respectively. The random numbers are added
to the amplitude measurements of Table 2 and the inverse problem is solved assuming that the number of cracks is two.
The crack parameters are estimated twenty times for each noise level, and the standard deviations sa1

, sa2
, sb1

and sb2
as

well as mean values a1, a2, b1, b2 and ð
Pm

i¼1

Pn
j¼1<

2
ij
Þ1=2 for each noise level are calculated as given in Table 5. It shows that

a1, a2, b1 and b2 remain much the same even though sa1
, sa2

, sb1
sb2

and ð
Pm

i¼1

Pn
j¼1<

2
ij
Þ1=2 increase as snoise increases.

It is strongly recommended to estimate the crack parameters by averaging the solutions of the inverse problems many
times because the input noise is always present in the measurements.
4. Conclusions

A simple method to detect multiple cracks in a beam using the vibration amplitudes is presented. The cracks are
modeled as massless rotational springs and the forward problem is solved by using the finite element method based on the
Euler–Bernoulli beam theory. The inverse problem is solved iteratively for the crack locations and sizes by the
Newton–Raphson method. The number of equations exceeds the number of crack parameters so that the system is
overdetermined, and the system of equations is solved in a least-squares sense using the singular value decomposition
method. A two-dimensional finite element model using ANSYS is built to simulate the experimental tests of Ruotolo and
Surace [21], and vibration amplitude measurements based on the two-dimensional finite element model are obtained. It is
found that there exists a significant discrepancy between the torsional stiffness models of Ostachowicz and Krawkczuk [18]
and Dimarogonas and Paipetis [20] and that their application without proper calibration may lead to an erroneous solution.
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Scaled down torsional stiffness model of Dimarogonas and Paipetis [20] is used in this study. The difficulty of identifying
multiple cracks without a priori knowledge of the number of cracks is overcome by comparing the residual sum of squares
of each solution with assumed number of cracks. The observed errors of the normalized crack locations b1 and b2 are
within 70.0048, and the errors of the estimated crack sizes are within 13 percent of the actual sizes. It is supposed that
the accuracy of the crack size estimations can be enhanced greatly by an improved torsional stiffness model. Choice of the
initial guesses of the crack parameters is important because the present method is based on the Newton–Raphson iteration
method. The ranges of the initial guesses to produce a converged solution are investigated. Also it is shown how the
solution of inverse problem is affected by the input data noise.
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